
Milestones in
Descriptive
Complexity Theory
ANU Logic Summer School, 2019

Presented by
Sasha Rubin
School of Computer Science
University of Sydney

What is complexity theory?

Analyses and classifies problems by the amount of a resource
required for handling them.

Problem:
– defines a computational task
– specifies what the input is and what the output should be

Algorithm:
– a step-by-step recipe to go from input to output
– different from implementation

Complexity analysis:
– bound on the resources used for solving/expressing the

problem.

1

What is complexity theory?

Analyses and classifies problems by the amount of a resource
required for handling them.

Which resources?
– Computational complexity theory takes computational

resources for solving the problem, e.g., time and space.
– Descriptive complexity theory takes logical resources for

expressing the problem, e.g., variables and quantifiers.
Amazingly, there is a beautiful and tight connection between these
two notions of complexity.

The goal of this course is to convince you of this fact.

1

Logistics

– Ask questions
– (important idea/fact)

– (do in class)

– (do at home)

2

Assumed notions and notation

– set theoretic predicates and operations: X ⊆ Y , X ⊂ Y ,
X ∪ Y , X ∩ Y , X \ Y , X × Y , ȳ ∈ X or X(ȳ).

– string predicates and operations: u · v, Σ∗.
– functions: f : X → Y , f(x) = y, dom(f), rng(f), bijections
– graphs: G = (V,E), paths, circuits
– equivalence relations, e.g., x ≡ y :if f(x) = f(y)

– linear orderings, e.g., lexicographic ordering

3

What is DCT?
Overview of the course
Logic and Definability

∃MSO captures REG on strings
Automata primer
An excursion into finite model theory

Fagin’s Theorem: ∃SO captures NPTIME
Computational complexity crash course
Computational complexity of logic problems
Sketch proof of Fagin’s Theorem

4

What is DCT?
Overview of the course
Logic and Definability

∃MSO captures REG on strings
Automata primer
An excursion into finite model theory

Fagin’s Theorem: ∃SO captures NPTIME
Computational complexity crash course
Computational complexity of logic problems
Sketch proof of Fagin’s Theorem

5

Overview of the course

6

Example: 3-Colourability (3-COL)
Definition

– A graph G = (V,E) is 3-colourable if there is a mapping
κ : V → {r, g, b} such that for all (v, w) ∈ E, κ(v) 6= κ(w).

7

Example: 3-Colourability (3-COL)
Definition

– A graph G = (V,E) is 3-colourable if there is a mapping
κ : V → {r, g, b} such that for all (v, w) ∈ E, κ(v) 6= κ(w).

Computational question. What time resources are sufficient for
deciding if a given graph is 3-colourable?

– Guess a mapping κ and cycle through every edge to test if the
colours are different. (A nondeterministic algorithm accepts an input if there is a

guess which leads to acceptance, otherwise it rejects)

– This is a nondeterministic algorithm that runs in time O(|G|).
– This puts 3-COL in the computational complexity class

NPTIME.

7

Example: 3-Colourability (3-COL)
Definition

– A graph G = (V,E) is 3-colourable if there is a mapping
κ : V → {r, g, b} such that for all (v, w) ∈ E, κ(v) 6= κ(w).

Descriptive question. What logical resources are sufficient for
describing the set of 3-colourable graphs?

– The property can be expressed by the formula

∃κ : V → {r, g, b} ∀(v, w) ∈ E κ(v) 6= κ(w)

– This puts 3-COL in the logical complexity class Existential
Second-Order Logic (∃SO).

7

Milestone 1: Fagin’s Theorem

On finite structures:

NPTIME = ∃SO

– A computational problem can be solved by a nondeterministic
polynomial time machine iff it can be expressed in existential
second order logic.

8

Milestone 2: Immerman-Livchak-Vardi’s
Theorem

On finite ordered-structures:

PTIME = FO[LFP]

A computational problem on finite ordered structures can be
computed by a (deterministic) polynomial time machine iff it can be
expressed in first order logic extended by least fixed-point operators.

9

Milestone 3: Büchi-Elgot-Trakhtenbrot’s
Theorem

On finite strings:

REG = MSO

A computational problem on finite strings can be computed by a
finite-state automaton iff it can be expressed in existential monadic
second order logic.

10

More?

OCTOBER 1995 NOTICES OF THE AMS 1127

Descriptive
Complexity:

A Logician’s Approach
to Computation

N. Immerman

A
basic issue in computer science is
the complexity of problems. If one is
doing a calculation once on a
medium-sized input, the simplest al-
gorithm may be the best method to

use, even if it is not the fastest. However, when
one has a subproblem that will have to be solved
millions of times, optimization is important. A
fundamental issue in theoretical computer sci-
ence is the computational complexity of prob-
lems. How much time and how much memory
space is needed to solve a particular problem?
Here are a few examples of such problems:
1. Reachability: Given a directed graph and

two specified points s, t , determine if there
is a path from s to t . A simple, linear-time
algorithm marks s and then continues to
mark every vertex at the head of an edge
whose tail is marked. When no more vertices
can be marked, t is reachable from s iff it
has been marked.

2. Min-triangulation: Given a polygon in the
plane and a length L, determine if there is
a triangulation of the polygon of total length
less than or equal to L. Even though there
are exponentially many possible triangula-
tions, a dynamic programming algorithm
can find an optimal one in O(n3) steps.

3. Three-Colorability: Given an undirected
graph, determine whether its vertices can be
colored using three colors with no two ad-
jacent vertices having the same color. Again

there are exponentially many possibilities,
but in this case no known algorithm is faster
than exponential time.

Computational complexity measures how
much time and/or memory space is needed as
a function of the input size. Let TIME[t(n)] be the
set of problems that can be solved by algorithms
that perform at most O(t(n)) steps for inputs of
size n. The complexity class polynomial time (P)
is the set of problems that are solvable in time
at most some polynomial in n.

P =

∞⋃

k=1

TIME[nk]

Even though the class TIME[t(n)] is sensitive
to the exact machine model used in the com-
putations, the class P is quite robust. The prob-
lems Reachability and Min-triangulation are el-
ements of P.

Some important computational problems ap-
pear to require more than polynomial time. An
interesting class of such problems is contained
in nondeterministic polynomial time (NP). A
nondeterministic computation is one that may
make arbitrary choices as it works. If any of
these choices leads to an accept state, then we
say the input is accepted. As an example, let us
consider the three-colorability problem. A non-
deterministic algorithm traverses the input
graph, arbitrarily assigning to each vertex a
color: red, yellow, or blue. Then it checks whether
each edge joins vertices of different colors. If so,
it accepts.

A nondeterministic computation can be mod-
eled as a tree whose root is the starting config-

N. Immerman is professor in the Department of Com-

puter Science, University of Massachusetts at Amherst.

His e-mail address is immerman@cs.umass.edu.

11

A lot more?

12

A lot more?

12

A lot more?

12

A lot more?

12

Finite Model Theory
The study of logics on classes of finite structures

Examples of logics
– First-order logic
– Second-order logic
– Logics with fixed-point operators
– Infinitary logics
– Logics with generalised quantifiers

Examples of classes of finite structures
– all finite graphs
– all finite ordered graphs
– all finite planar graphs
– all finite strings
– all finite trees

13

Reasons for developing FMT

Connections and applications to CS
– Algorithms and computational complexity (this course!)
– Automata theory (this course!)
– Database Theory (SQL, Datalog)
– Verification (in AI, Distributed Computing, Business Process

Management)
For its own sake

– Traditional focus of mathematical logic has been on fixed
infinite structures (e.g., real-arithmetic), or classes of finite
and infinite structures.

– New phenomena emerge when one focuses on classes of finite
structures.

– FO loses its unique status and other logics also feature

14

Logic and Definability

15

Basic concepts from logic

Definitions
– Signature σ is a finite tuple (R1, · · · , Rm) of relation symbols

of specified arities. (Function symbols can also be handled)

– σ-structure A = (A, (R1)A, · · · , (Rm)A) is a set A, called the
domain, and relations RA on A of the specified arities.

We usually drop superscripts and write (A,R1, · · · , Rm).

NB. All σ-structures in this course are finite (i.e., have finite
domain), unless otherwise stated.

16

Basic concepts from logic

Definitions
– Signature σ is a finite tuple (R1, · · · , Rm) of relation symbols

of specified arities. (Function symbols can also be handled)

– σ-structure A = (A, (R1)A, · · · , (Rm)A) is a set A, called the
domain, and relations RA on A of the specified arities.

We usually drop superscripts and write (A,R1, · · · , Rm).

NB. All σ-structures in this course are finite (i.e., have finite
domain), unless otherwise stated.

16

Structures

Graphs
– Signature (E) with ar(E) = 2

– G = (V,E) where E ⊆ V 2

Strings over alphabet Σ

– Signature (<, (Pa)a∈Σ) with ar(<) = 2 and ar(Pa) = 1.
– For Σ = {a, b, c}, the string acaac encoded as the structure
Sacaac := (V,<, Pa, Pb, Pc) where V = {1, 2, 3, 4, 5}, < is the
usual order on numbers, and Pa = {1, 3, 4}, Pb = ∅,
Pc = {2, 5}.

– Structures S = (V,<, (Pa)a∈Σ) where < is a linear order on
V , the P̄ partition V are called string structures or strings.

17

Structures

Graphs
– Signature (E) with ar(E) = 2

– G = (V,E) where E ⊆ V 2

Strings over alphabet Σ

– Signature (<, (Pa)a∈Σ) with ar(<) = 2 and ar(Pa) = 1.
– For Σ = {a, b, c}, the string acaac encoded as the structure
Sacaac := (V,<, Pa, Pb, Pc) where V = {1, 2, 3, 4, 5}, < is the
usual order on numbers, and Pa = {1, 3, 4}, Pb = ∅,
Pc = {2, 5}.

– Structures S = (V,<, (Pa)a∈Σ) where < is a linear order on
V , the P̄ partition V are called string structures or strings.

17

First order (FO) logic
Fix signature σ.

Syntax
– first order variables: x, y, z · · ·
– formulas:

– atomic formulas: x = y, and R(x̄) for R in σ
– Boolean connectives ∧,¬
– First-order quantification ∃x,∃y

Semantics
– formulas are interpreted on σ-structures A
– in particular, first-order variables vary over elements of the

domain A of the structure.
– Define A |= ϕ(ā) where ā is an assignment of the free

variables in ϕ to elements of A.
– Say that A satisfies ϕ under assignment α.

18

Definability

Definition
– Fix signature σ
– For a sentence ϕ ∈ FO, write Mod(ϕ) for the set of
σ-structures satisfying ϕ.

– For a set P of σ-structures, if P = Mod(ϕ) then we say that
ϕ defines P .

19

FO definability

Signature of graphs (E).

– The sentence

(∀x)(∀y)E(x, y)→ E(y, x)

defines the set of undirected graphs.
– The sentence

(∀x)(∀y)E(x, y)→ ¬(x = y)

defines the set of graphs with no self-loops.

20

FO definability

Signature of binary strings σ := (<,Pa, Pb).
– The set of all binary-string structures is definable by an FO

sentence that says that < linear orders the domain and Pa, Pb
partition the domain.

– "x is the first (resp. last) position"

– "position y is immediately after position x", written
y = x+ 1.

– "the string contains the substring aab"

(∃x)(∃y)(∃z)(y = x+ 1 ∧ z = y + 1 ∧ Pa(x) ∧ Pa(y) ∧ Pb(z))

21

FO definability

Signature of binary strings σ := (<,Pa, Pb).
– The set of all binary-string structures is definable by an FO

sentence that says that < linear orders the domain and Pa, Pb
partition the domain.

– "x is the first (resp. last) position"

– "position y is immediately after position x", written
y = x+ 1.

– "the string contains the substring aab"

(∃x)(∃y)(∃z)(y = x+ 1 ∧ z = y + 1 ∧ Pa(x) ∧ Pa(y) ∧ Pb(z))

21

Second order logic (SO)
Second order logic (SO) extends FO by

– second-order variables X,Y, Z · · · that vary over relations on
the domain.

– atomic formulas Z(x̄), etc.

Every SO formula can be translated into an equivalent formula
in prenex form:

(Q1X1)(Q2X2) · · · (QkXk) Φ

where each Qi ∈ {∃,∀} and the only quantification in Φ is first
order.

Fragments of prenex form:
– Existential second order logic (∃SO): all Qis are ∃
– Universal second order logic (∀SO): all Qis are ∀

22

∃SO definability on undirected graphs

– Fix the signature of graphs (E).
– Show that the set of 3-colourable undirected graphs is

definable in ∃SO, i.e., find an ∃SO sentence Φ such that
G |= Φ iff G is a 3-colourable undirected graph.

– Being undirected is FO definable. So we focus on
3-colourability (assuming the graph is undirected).

(∃X1)(∃X2)(∃X3)

(∀x)[
∨
i

Xi(x) ∧
∧
i 6=j

Xi(x)→ ¬Xj(x)]

∧

(∀x)(∀y)[
∧
i

E(x, y)→ ¬(Xi(x) ∧Xi(y))]

23

∃SO definability on undirected graphs

– Fix the signature of graphs (E).
– Show that the set of 3-colourable undirected graphs is

definable in ∃SO, i.e., find an ∃SO sentence Φ such that
G |= Φ iff G is a 3-colourable undirected graph.

– Being undirected is FO definable. So we focus on
3-colourability (assuming the graph is undirected).

(∃X1)(∃X2)(∃X3)

(∀x)[
∨
i

Xi(x) ∧
∧
i 6=j

Xi(x)→ ¬Xj(x)]

∧

(∀x)(∀y)[
∧
i

E(x, y)→ ¬(Xi(x) ∧Xi(y))]

23

Monadic second order logic (MSO)

Monadic second order logic (MSO) extends FO by
– second-order variables X,Y, Z · · · that vary over subsets of

the domain.

Every MSO formula can be translated into an equivalent
formula prenex-form:

(Q1X1)(Q2X2) · · · (QkXk) Φ

where each Qi ∈ {∃,∀} and the only quantification in Φ is first
order.

Fragments of prenex-form:
– Existential monadic second order logic (∃MSO): all Qis are ∃
– Universal monadic second order logic (∀MSO): all Qis are ∀

24

Definability

For undirected graphs, which of these can you express in ∃SO,
∃MSO, ∀MSO:

– "there is a path from x to y"
– "the graph is connected"
– "the graph has a perfect matching"
– "the graph has a Hamiltonian cycle"

25

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"the string is a sequence of a’s followed by a sequence of b’s"

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"the string is a sequence of a’s followed by a sequence of b’s"

(∀x)(∀y)(Pa(x) ∧ Pb(y)→ x < y)

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all, and only, odd positions contain a’s"

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all, and only, odd positions contain a’s"

Pa(min) ∧ (∀x < max)(Pa(x)↔ ¬Pa(x+ 1))

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all odd positions contain a’s"

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all odd positions contain a’s"

(∃X)[X(min) ∧ (∀x < max)(X(x)↔ ¬X(x+ 1))∧
(∀x)(X(x)→ Pa(x)]

It turns out that this property is not expressible in FO.

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all positions divisible by 2 or 3 contain a’s"

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"all positions divisible by 2 or 3 contain a’s"

(∃X)(∃Y)

[X(min) ∧ (∀x < max)(X(x)↔ ¬X(x+ 1))∧
[Y (min) ∧ (∀x < max)(Y (x)↔ (¬Y (x+ 1) ∧ ¬Y (x+ 2)))∧
(∀x)(X(x) ∨ Y (x)→ Pa(x)]

Is this expressible using one existential monadic second-order
quantifier?

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"the string contains the same number of a’s as b’s"

26

∃SO definability on strings

Fix alphabet Σ = {a, b}. Express in FO, ∃MSO, ∃SO:

"the string contains the same number of a’s as b’s"

(∃R)[func(R) ∧ dom(R) = Pa ∧ rng(R) = Pb ∧ inj(R)]

It turns out that this property is not expressible in MSO.

26

What is DCT?
Overview of the course
Logic and Definability

∃MSO captures REG on strings
Automata primer
An excursion into finite model theory

Fagin’s Theorem: ∃SO captures NPTIME
Computational complexity crash course
Computational complexity of logic problems
Sketch proof of Fagin’s Theorem

27

Framework

Fix a signature σ.
– A problem P is a set of σ-structures.

– "the set of all connected graphs"
– "the set of all graphs with a Hamiltonian circuit"
– "the set of all strings with the same number of a’s as b’s"

– For a logic L, a problem P is L-definable if P = Mod(ϕ) for
some ϕ ∈ L.

– For a complexity class C, a problem P is C-solvable if the
complexity of deciding if a given σ-structure A is in P is in C.

Definition
– L captures C if every problem is L-definable iff it is C-solvable.

Machine-independent characterisation of a complexity class.

28

Automata primer

29

Automata Primer

Deterministic finite-state automaton (DFA) M = (Σ, Q, q0, δ, F)

– Σ finite alphabet
– Q finite set of states
– q0 ∈ Q initial state
– δ : Q× Σ→ Q transition function
– F ⊆ Q final states

Acceptance
– A string w ∈ Σ∗ is accepted by M if there is a path labeled

by w from the initial state to a final state.
Automata are language recognisers

– M recognises the set of strings w ∈ Σ∗ it accepts
– A language L is regular if it is recognised by some DFA
– REG denotes the set of all regular languages

30

Regular languages

Examples (Σ = {a, b})
– all strings
– "the string is a sequence of a’s followed by a sequence of b’s"
– "all, and only, odd positions contain a’s"
– "all odd positions contain a’s"

The set "strings containing the same number of a’s as b’s" is
not regular.

Proof. Suppose there is a DFA M recognising this set.

– for every n ∈ N the string an labels a path ending in state qn.

– since anbn is accepted by M , there is a path from qn labeled bn to a final state.

– Since M is finite, there exist n 6= m such that qn = qm.

– Thus M must also accept anbm, contradiction.

31

Regular languages

Examples (Σ = {a, b})
– all strings
– "the string is a sequence of a’s followed by a sequence of b’s"
– "all, and only, odd positions contain a’s"
– "all odd positions contain a’s"

The set "strings containing the same number of a’s as b’s" is
not regular.

Proof. Suppose there is a DFA M recognising this set.

– for every n ∈ N the string an labels a path ending in state qn.

– since anbn is accepted by M , there is a path from qn labeled bn to a final state.

– Since M is finite, there exist n 6= m such that qn = qm.

– Thus M must also accept anbm, contradiction.

31

REG = MSO = ∃MSO on strings

Recall our coding:
– string w over alphabet Σ is coded as the structure
Sw := ({1, 2, · · · , |w|}, <, (Pa)a∈Σ).

– set L ⊆ Σ∗ is coded as the set {Sw : w ∈ L} of string
structures.

Theorem
The following are equivalent for a set L ⊆ Σ∗ of finite strings:

– L is recognised by a DFA
– {Sw : w ∈ L} is definable in ∃MSO
– {Sw : w ∈ L} is definable in MSO

In short:
REG = MSO = ∃MSO, on finite strings

32

DFA to ∃MSO

For DFA M = (Σ, Q, q0, δ, F) with Q = {1, 2, · · · ,m}, we define
an ∃MSO formula ΦM such that M accepts w ∈ Σ∗ iff Sw |= ΦM .

(∃Q1) · · · (∃Qm) Partition ∧ Start ∧ Trans ∧ End

where
– Partition says "the sets Q̄ partition the domain"
– Start says "the first state is q0", i.e., Qq0(min)

– Trans says "the sets Q̄ encode the path labeled by the input
word, except for the final transition", i.e.,∧
i,a(∀t < max)(Pa(t) ∧Qi(t)→ Qδ(i,a)(t+ 1))

– End says "the last transition of the path results in a final
state", i.e.,

∨
{(i,a):δ(i,a)∈F}(Qi(max) ∧ Pa(max))

33

DFA to ∃MSO

For DFA M = (Σ, Q, q0, δ, F) with Q = {1, 2, · · · ,m}, we define
an ∃MSO formula ΦM such that M accepts w ∈ Σ∗ iff Sw |= ΦM .

(∃Q1) · · · (∃Qm) Partition ∧ Start ∧ Trans ∧ End

where
– Partition says "the sets Q̄ partition the domain"
– Start says "the first state is q0", i.e., Qq0(min)

– Trans says "the sets Q̄ encode the path labeled by the input
word, except for the final transition", i.e.,∧
i,a(∀t < max)(Pa(t) ∧Qi(t)→ Qδ(i,a)(t+ 1))

– End says "the last transition of the path results in a final
state", i.e.,

∨
{(i,a):δ(i,a)∈F}(Qi(max) ∧ Pa(max))

33

MSO to DFA

Aim: For MSO-formula ϕ, we define DFA Mϕ such that Sw |= ϕ
iff Mϕ accepts w.

First Attempt. Define automaton (Σ, Q, q0, δ, F) where
– states are the sets Th(u) := {ϕ ∈ MSO : Su |= ϕ} for u ∈ Σ∗.
– initial state Th(λ) where λ is the empty string
– final states are those Th(u) that contain ϕ
– transitions δ(Th(u), a) = Th(ua)

What’s wrong with this?

– u 6= v implies Th(u) 6= Th(v)

– i.e., the automaton has infinitely many states

34

MSO to DFA

Aim: For MSO-formula ϕ, we define DFA Mϕ such that Sw |= ϕ
iff Mϕ accepts w.

First Attempt. Define automaton (Σ, Q, q0, δ, F) where
– states are the sets Th(u) := {ϕ ∈ MSO : Su |= ϕ} for u ∈ Σ∗.
– initial state Th(λ) where λ is the empty string
– final states are those Th(u) that contain ϕ
– transitions δ(Th(u), a) = Th(ua)

What’s wrong with this?
– u 6= v implies Th(u) 6= Th(v)

– i.e., the automaton has infinitely many states

34

The road ahead...

– To fix this, we keep track of fewer formulas, but enough to
update the states and determine when ϕ holds

– In particular, we keep only formulas with the same quantifier
rank as ϕ.

– This ensures that there are finitely many states.
– But then we need to show that the transitions are well-defined.

To explain all this, we take...

35

An excursion into finite model
theory

36

Quantifier-rank

Definition
– The quantifier-rank of ϕ is the depth of the quantifier-nesting

in ϕ.
Examples

– E(x, y) has qr 0.
– (∀x)(∃y)(∀z)(E(x, y) ∧ ¬E(y, z)) has qr 3.
– [(∃x)E(x, x)] ∧ [(∀x)(∃y)E(x, y)] has qr 2.
– qr(φ) = r implies φ is a Bool combination of ∃X.ψ with
qr(ψ) ≤ r − 1, and at least one ψ with qr(ψ) = r − 1.

37

Quantifier-rank

Definition
– The quantifier-rank of ϕ is the depth of the quantifier-nesting

in ϕ.
Definitions. Fix logic L.

– ThLr (A) := {ϕ ∈ L : qr(ϕ) = r,A |= ϕ}
– Write A ≡Lr B if ThLr (A) = ThLr (B), i.e., they satisfy the

same L-sentences of qr r. (equivalence relation)

37

Quantifier-rank

Definition
– The quantifier-rank of ϕ is the depth of the quantifier-nesting

in ϕ.
Definitions. Fix logic L.

– ThLr (A) := {ϕ ∈ L : qr(ϕ) = r,A |= ϕ}
– Write A ≡Lr B if ThLr (A) = ThLr (B), i.e., they satisfy the

same L-sentences of qr r. (equivalence relation)

Central properties:
– A |= Thr(B) implies A =Lr B.
– For every r, there are finitely many r-theories. (Show, by induction on

r, that for every m, there are finitely many MSO-formulas on the m variables x1, · · · , xm of

quantifier rank r up to logical equivalence.)

37

Distinguishing structures

– A = (Z, <) and B = (Q, <)

– What FO formula distinguishes A from B? What is the
quantifier rank?

– Is there a formula of smaller quantifier rank that distinguishes
them?

38

FO Ehrenfeucht-Fraïssé games with r

moves

– Spoiler and Duplicator play on two σ-structures A and B

– Each play of the game has r moves. In each move
– Spoiler picks an element of one of the structures.
– Duplicator picks an element of the other structure.

– A typical play looks as follows:
Round 1 2 3 . . . r
Spoiler a1 ∈ A b2 ∈ B b3 ∈ B · · · ar ∈ A

Duplicator b1 ∈ B a2 ∈ A a3 ∈ A · · · br ∈ B
– Duplicator wins the play if (A, ā) and (B, b̄) agree on the

quantifier-free sentences.
– Duplicator wins the game, if he wins no matter what Spoiler

does.

39

Ehrenfeucht-Fraïssé games capture
logical equivalence

Theorem Duplicator wins the FO Ehrenfeucht-Fraïssé r-round
game on A,B iff ThFO

r (A) = ThFO
r (B).

Illustration
– A = (Z, <) and B = (Q, <)

– What FO formula distinguishes A from B? What is the
quantifier rank?

– Is there a FO formula of smaller quantifier rank that
distinguishes them?

Play the game!

40

Ehrenfeucht-Fraïssé games capture
logical equivalence

Theorem Duplicator wins the FO Ehrenfeucht-Fraïssé r-round
game on A,B iff ThFO

r (A) = ThFO
r (B).

Illustration
– A = (Z, <) and B = (Q, <)

– What FO formula distinguishes A from B? What is the
quantifier rank?

– Is there a FO formula of smaller quantifier rank that
distinguishes them?

Play the game!

40

Ehrenfeucht-Fraïssé games capture
logical equivalence

Theorem Duplicator wins the FO Ehrenfeucht-Fraïssé r-round
game on A,B iff ThFO

r (A) = ThFO
r (B).

Illustration
– A = (Z, <) and B = (Q, <)

– What FO formula distinguishes A from B? What is the
quantifier rank?

– Is there a FO formula of smaller quantifier rank that
distinguishes them?

Play the game!

40

Ehrenfeucht-Fraïssé games for MSO

A similar game captures ≡MSO
r

– allow players to pick subsets Ai, Bi of the domains
– declare that Duplicator wins the play if (A, ā, Ā) and (B, b̄, B̄)

agree on the quantifier-free sentences.

Theorem Duplicator wins the MSO Ehrenfeucht-Fraïssé r-round
game on A,B iff ThMSO

r (A) = ThMSO
r (B).

41

Composing Structures

Definition
– Fix signature σ = (<,R1, · · · , Rm) with order symbol <
– Write A /B for the structure with

– domain A ∪B (assume A,B disjoint),
– relation < is <A ∪ <B ∪ (A×B),
– and R is RA ∪RB for the other relation symbols R in the

signature.

Example
– Sab / Saab = Sabaab.

42

Composing Theories

Composition Theorem
If A ≡MSO

r A′ and B ≡MSO
r B′, then A /B ≡MSO

r A′ /B′.

Conclude:
– So, in the construction from MSO to DFA, take ThMSO

qr(ϕ)(Su)

instead of Th(u).
– This finishes the proof that REG = MSO = ∃MSO on strings.

43

Composing Theories

Composition Theorem
If A ≡MSO

r A′ and B ≡MSO
r B′, then A /B ≡MSO

r A′ /B′.

Conclude:
– So, in the construction from MSO to DFA, take ThMSO

qr(ϕ)(Su)

instead of Th(u).
– This finishes the proof that REG = MSO = ∃MSO on strings.

43

Proving the composition theorem

– To prove the composition theorem, it is enough to establish
that if the Duplicator wins the r-round game on (A,A′) as
well as (B,B′) then she also wins the r-round game on
(A /B,A′ /B′)

– Intuitively, this is true by having Duplicator play the two
games (A,A′) and (B,B′) on the side in order to know what
to play in the game (A /B,A′ /B′).

– In the next slides we provide some of the formalities.

44

Proofs

Definition
– G0(A,B) if A ≡0 B.
– Gr+1(A,B) if the following two conditions hold:
forth: for every A′ ⊆ A there exists B′ ⊆ B such that

Gr((A, A
′)), (B, B′))

back: for every B′ ⊆ B there exists A′ ⊆ A, such that
Gr((A, A

′)), (B, B′)).

Informally, in the (r+ 1)-round game, every move by Spoiler can be
"matched" by Duplicator so that Duplicator can survive the
remaining r-round game.

45

Proofs

Theorem
– If Gr(A,A′) and Gr(B,B′) then Gr(A /B,A′ /B′)

Proof
– Let X ⊆ A ∪B (the other case is symmetric).
– There exists Y1 ⊆ A′ such that Gr−1((A, X ∩A), (A′, Y1))

– There exists Y2 ⊆ B′ such that Gr−1((B, X ∩B), (B′, Y2))

– By induction, Gr−1((A /B, X), (A′ /B′, Y1 ∪ Y2)).

46

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇒
– Say Gr(A,B) and qr(ϕ) = r. We will show that A |= ϕ

implies B |= ϕ (the other case is symmetric).

– It is enough to prove it for ϕ = ∃X.ψ with qr(ψ) = r − 1
(why?)

– Since A |= ϕ, there is some A1 such that A |= ψ(A1).
– Matching the choice of A1 ⊆ A, there exists B1 ⊆ B such

that Gr−1((A, A1), (B, B1)).
– By induction, (A, A1) ≡r−1 (B, B1). Thus they agree on ψ.

47

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇒
– Say Gr(A,B) and qr(ϕ) = r. We will show that A |= ϕ

implies B |= ϕ (the other case is symmetric).
– It is enough to prove it for ϕ = ∃X.ψ with qr(ψ) = r − 1

(why?)

– Since A |= ϕ, there is some A1 such that A |= ψ(A1).
– Matching the choice of A1 ⊆ A, there exists B1 ⊆ B such

that Gr−1((A, A1), (B, B1)).
– By induction, (A, A1) ≡r−1 (B, B1). Thus they agree on ψ.

47

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇒
– Say Gr(A,B) and qr(ϕ) = r. We will show that A |= ϕ

implies B |= ϕ (the other case is symmetric).
– It is enough to prove it for ϕ = ∃X.ψ with qr(ψ) = r − 1

(why?)
– Since A |= ϕ, there is some A1 such that A |= ψ(A1).

– Matching the choice of A1 ⊆ A, there exists B1 ⊆ B such
that Gr−1((A, A1), (B, B1)).

– By induction, (A, A1) ≡r−1 (B, B1). Thus they agree on ψ.

47

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇒
– Say Gr(A,B) and qr(ϕ) = r. We will show that A |= ϕ

implies B |= ϕ (the other case is symmetric).
– It is enough to prove it for ϕ = ∃X.ψ with qr(ψ) = r − 1

(why?)
– Since A |= ϕ, there is some A1 such that A |= ψ(A1).
– Matching the choice of A1 ⊆ A, there exists B1 ⊆ B such

that Gr−1((A, A1), (B, B1)).

– By induction, (A, A1) ≡r−1 (B, B1). Thus they agree on ψ.

47

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇒
– Say Gr(A,B) and qr(ϕ) = r. We will show that A |= ϕ

implies B |= ϕ (the other case is symmetric).
– It is enough to prove it for ϕ = ∃X.ψ with qr(ψ) = r − 1

(why?)
– Since A |= ϕ, there is some A1 such that A |= ψ(A1).
– Matching the choice of A1 ⊆ A, there exists B1 ⊆ B such

that Gr−1((A, A1), (B, B1)).
– By induction, (A, A1) ≡r−1 (B, B1). Thus they agree on ψ.

47

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.

– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).

– We must find B′ ⊆ B that "matches" A′ for Duplicator to
survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).

– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).

– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).

– Let Ψ(X ′) =
∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).

– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.

– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).

– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

Proofs

Theorem Gr(A,B) iff A ≡r B.

Note: the case r = 0 is by definition.

Proof of ⇐
– Say A ≡r B.
– Let A′ ⊆ A (the other case is symmetric).
– We must find B′ ⊆ B that "matches" A′ for Duplicator to

survive the (r − 1)-game, i.e., Gr−1((A, A′), (B, B′)).
– By induction, this is the same as (A, A′) ≡r−1 (B, B′).
– Let Ψ(X ′) =

∧
Thr−1((A, A′))[A′/X ′].

– Then qr(Ψ) = r and A |= ∃X ′Ψ(X ′), so B |= ∃X ′Ψ(X ′).
– Say B |= Ψ(B′) for some B′ ⊆ B.
– So (B, B′) |= Thr−1(A, A′).
– So Thr−1(B, B′) = Thr−1(A, A′), i.e., (B, B′) ≡r−1 (A, A′).

48

What have we done?

We defined a notion Gr(A,B) and proved:
1. If Gr(A,A′) and Gr(B,B′) then Gr(A /B,A′ /B′)

2. Gr(A,B) iff A ≡r B (Ehrenfeucht-Fraïssé Theorem)

And so conclude:

3. If A ≡r A′ and B ≡r B′ then A /B ≡r A′ /B′
(Composition Theorem)

49

Consequences of Ehrenfeucht-Fraïssé
games

Logics capturing models of computation
– REG = MSO on strings
– there is an analogous characterisation of FO on strings

(star-free regular sets)

Decidability
– MSO-satisfiability on finite strings is decidable.

Non-definability
– The set {Sw : #a(w) = #b(w)} is not MSO-definable.

– The following classes of graphs are not MSO-definable:
– graphs with a perfect-matching
– graphs with a Hamiltonian cycle

– Connectivity is not ∃MSO definable. (Hard)

50

Consequences of Ehrenfeucht-Fraïssé
games

Logics capturing models of computation
– REG = MSO on strings
– there is an analogous characterisation of FO on strings

(star-free regular sets)
Decidability

– MSO-satisfiability on finite strings is decidable.

Non-definability
– The set {Sw : #a(w) = #b(w)} is not MSO-definable.

– The following classes of graphs are not MSO-definable:
– graphs with a perfect-matching
– graphs with a Hamiltonian cycle

– Connectivity is not ∃MSO definable. (Hard)

50

Consequences of Ehrenfeucht-Fraïssé
games

Logics capturing models of computation
– REG = MSO on strings
– there is an analogous characterisation of FO on strings

(star-free regular sets)
Decidability

– MSO-satisfiability on finite strings is decidable.
Non-definability

– The set {Sw : #a(w) = #b(w)} is not MSO-definable.

– The following classes of graphs are not MSO-definable:
– graphs with a perfect-matching
– graphs with a Hamiltonian cycle

– Connectivity is not ∃MSO definable. (Hard)

50

Takeaway

Theorem If A ≡r A′ and B ≡r B′ then A /B ≡r A′ /B′

In general, a "composition theorem" says that the theory of a
composed structure is determined by, and computable from, the
theories of its parts.

– Feferman-Vaught for FO and generalised products
– Läuchli-Shelah-Gurevich for MSO and generalised sums
– Good read: "Algorithmic uses of the Feferman-Vaught

Theorem" by J.A. Makowsky
Show that MSO has no composition theorem for

cartesian-product.

51

What is DCT?
Overview of the course
Logic and Definability

∃MSO captures REG on strings
Automata primer
An excursion into finite model theory

Fagin’s Theorem: ∃SO captures NPTIME
Computational complexity crash course
Computational complexity of logic problems
Sketch proof of Fagin’s Theorem

52

Framework

Fix a signature σ.
– A property P is a set of σ-structures.
– For a logic L, a property P is L-definable if P = Mod(ϕ) for

some ϕ ∈ L.
– For a complexity class C, a property P is C-solvable if the

complexity of deciding "does A have property P" is in C.
Example

– The property "the set of all 3-colourable graphs" is
∃SO-definable and NPTIME-solvable.

Definition
– L captures C if every property is L-definable iff it is C-solvable.

Fagin’s Theorem: ∃SO captures NPTIME

53

Computational complexity crash
course

54

Computational complexity

Algorithms (Actually, Turing Machines)

– Deterministic
– Nondeterministic ("guess" operator)

Some complexity classes
– PTIME, PSPACE, EXPTIME, EXPSPACE
– NPTIME, NPSPACE

55

Deterministic case

Algorithms
– an input induces a single execution.
– algorithm accepts the input if this execution is successful (i.e.,

outputs "Yes").
Running time

– The running time of Alg is the function t : N→ N where t(n)
is the largest number of steps used by Alg on the execution of
any input of length n.

– DTIME(t(n)) is the set of problems solvable by deterministic
algorithms that run in time O(t(n)).

Complexity classes
– PTIME =

⋃
k DTIME(nk)

– EXPTIME =
⋃
k DTIME(2n

k
)

56

Nondeterministic case

Algorithms
– an input may induce more than one execution.
– algorithm accepts the input if at least one execution is

successful.
Running time

– The running time of Alg is the function t : N→ N where t(n)
is the largest number of steps used by Alg on any execution of
any input of length n.

– NTIME(t(n)) is the set of problems solvable by
non-deterministic algorithms that run in time O(t(n)).

Complexity classes
– NPTIME =

⋃
k NTIME(nk)

57

Computational complexity of
logic problems

58

Two algorithmic problems for logic

Satisfiability problem
– In: formula ϕ ∈ L
– Out: "Yes" if there exists A |= ϕ, and "No" otherwise.

(Recall that ϕ is valid iff ¬ϕ is not satisfiable.)

Model-checking problem
– In: formula ϕ ∈ L, structure A

– Out: "Yes" if A |= ϕ, and "No" otherwise.

59

Comments about satisfiability

For arbitrary structures:

– Validity of FO is computably enumerable, but not computable.
– Satisfiability of FO is not computably enumerable.

When restricted to finite structures:
– Satisfiability of first-order logic is computably enumerable, but

not computable (Trakhtenbrot).
– In particular, there is no sound and complete effective proof

system for FO on finite structures.

60

Model-checking vs Satisfiability

In FMT, model-checking plays a more central role than
satisfiability. Why?

– A property is C-solvable iff it is L-definable.
– The ⇐ direction talks about model-checking not satisfiability.

– Does it say that the complexity of model-checking formulas
from L is in C?

Not quite.
– It says that the complexity measured in terms of the size

structure (not the formula) is in C.
– This is called the structure complexity of model-checking C.

61

Model-checking vs Satisfiability

In FMT, model-checking plays a more central role than
satisfiability. Why?

– A property is C-solvable iff it is L-definable.
– The ⇐ direction talks about model-checking not satisfiability.
– Does it say that the complexity of model-checking formulas

from L is in C?

Not quite.
– It says that the complexity measured in terms of the size

structure (not the formula) is in C.
– This is called the structure complexity of model-checking C.

61

Model-checking vs Satisfiability

In FMT, model-checking plays a more central role than
satisfiability. Why?

– A property is C-solvable iff it is L-definable.
– The ⇐ direction talks about model-checking not satisfiability.
– Does it say that the complexity of model-checking formulas

from L is in C?

Not quite.
– It says that the complexity measured in terms of the size

structure (not the formula) is in C.
– This is called the structure complexity of model-checking C.

61

Algorithm for model-checking FO

Theorem The structure-complexity of model-checking FO is in
PTIME.

– Cycle through all possible instantiations in A of the quantifiers
of ϕ.

– E.g., (∀x)(∃y)E(x, y) has a double-loop that scans through
the pairs (a, b) ∈ A2 and checks E(a, b).

– This is a deterministic polynomial time algorithm (where the
exponent depends on the formula, which is assumed to be
fixed).

Show that the structure complexity can be solved in time
O(|ϕ| × |A|w) where w is maximum number of free variables in
subformulas of ϕ.

62

Algorithm for model-checking ∃SO

Nondeterministic algorithm
– For ∃SO formula Φ := ∃Z1∃Z2 · · · ∃Zmϕ,
– For a structure A,
– Guess A1 ⊆ Ar1 , · · · , Am ⊆ Arm ,
– Check if (A, A1, · · · , Am) |= ϕ using the deterministic

algorithm before.

Complexity for fixed formula Φ.
– Guessing takes time polynomial in |A|, i.e., O(m× |A|max ri)

– Checking takes time polynomial in |A|
– So the structure-complexity of model-checking ∃SO is in

NPTIME

63

Algorithm for model-checking ∃SO

Nondeterministic algorithm
– For ∃SO formula Φ := ∃Z1∃Z2 · · · ∃Zmϕ,
– For a structure A,
– Guess A1 ⊆ Ar1 , · · · , Am ⊆ Arm ,
– Check if (A, A1, · · · , Am) |= ϕ using the deterministic

algorithm before.
Complexity for fixed formula Φ.

– Guessing takes time polynomial in |A|, i.e., O(m× |A|max ri)

– Checking takes time polynomial in |A|
– So the structure-complexity of model-checking ∃SO is in

NPTIME

63

Sketch proof of Fagin’s
Theorem

64

Fagin’s Theorem

Fix a signature σ.

Theorem ∃SO captures NPTIME
1. Structure complexity of model-checking ∃SO is in NPTIME
2. Every set of σ-structures computable for which membership is

NPTIME is ∃SO-definable.

65

Hang on, how do Turing machines work
on structures?

We need to decide how to encode σ-structures A as strings, so we
can give them as input to Turing machines. Let’s do graphs (V,E).

– Fix an ordering v1 < v2 < · · · < vn of the vertices.
– This induces the lexicographic ordering on pairs of vertices:

(v, w) < (v′, w′) if v < v′, or v = v′ and w < w′.
– i.e., the first pair is (v1, v1), the second is (v2, v1), the third is

(v3, v1), until (vn, v1), and then (v1, v2), etc.
– Code the graph (V,E) as the string

0n1 · enc(E)

where enc(E) is the bit-string of length n2 with a 1 in position
i iff the lexicographically ith tuple (v, w) is in E.

– What are the encodings of ({a, b, c}, {(a, b), (b, c)})?
66

NPTIME problems are ∃SO-definable

Given
– a set P of σ-structures
– a nondeterministic Turing machine M running in time nk

deciding if a given encoding of a given σ-structure is in P ,
there exists an ∃SO formula ϕM such that M accepts an encoding
of A iff A |= ϕM .

67

NPTIME problems are ∃SO-definable

Recall (from week 1) that satisfiability of FO in arbitrary structures
is undecidable.

– Given TM M , it built FO-formula ϕM such that M halts on
empty input iff ϕM is satisfiable.

– The signature of ϕM included a binary symbol < satisfying the
axioms of the order on the natural numbers.

– The order allowed one to talk about time t and space p. Then
FO can axiomatise the following relations:

– Stateq(t): at time t, machine sate is q
– Pos(t, p): at time t, machine head is in position p on the

tape
– Tapea(t, p): at time t, symbol a is written at position p

of the tape
and express the machine halts.

68

NPTIME problems are ∃SO-definable

The idea is similar except that now the formula ϕM is to be
interpreted on a given structure A.

So, the formula has to also express that:
– the input to the TM is the encoding of A,
– there is an ordering that can code a polynomial number of

steps/cells.
It is boring, but one can adapt ϕM so that:

– M accepts an encoding of A iff A |= ϕM

The main insight is that one can use ∃SO to express the
existence of an order L on A, and then the formula can use the
lexicographic order on k-tuples of A to count up to |A|k, and thus
has access to all the time/space needed by a polynomial-time
machine.

69

Consequences of Fagin’s theorem

Corollaries:
– coNPTIME = ∀SO
– So: NPTIME 6= coNPTIME iff ∃SO 6= ∀SO
– Showing ∃SO 6= ∀SO would also imply NPTIME 6= PTIME.
– We do know ∃MSO 6= ∀MSO.

70

Time to wrap up

71

What have we seen in this course?

– Logic for defining properties of finite strings, graphs, etc.
– Algorithms for deciding if a given structures satisfies a fixed

formula, e.g., PTIME for FO, NPTIME for ∃SO, automata
for MSO on strings.

– Connections between describing and solving.
– Tools from finite model theory: Ehrenfeucht-Fraïssé games,

Composition theorem
– Undefinability results (property X is not definable in logic L)

72

If you remember one thing from this
course

There is a tight connection between
– computational resources needed for solving
problems, and

– logical resources needed for describing problems.

73

References

– Phokion Kolaitis’ ESSLLI slides on FMT
– Erich Grädel’s chapter "Finite model theory and descriptive

complexity theory".
– Leonid Libkin’s book "Elements of finite model theory"

74

	What is DCT?
	Overview of the course
	Logic and Definability

	MSO captures REG on strings
	Automata primer
	An excursion into finite model theory

	Fagin's Theorem: SO captures NPTIME
	Computational complexity crash course
	Computational complexity of logic problems
	Sketch proof of Fagin's Theorem

